Thyroid Physiology and Congenital Hypothyroidism

PES Board Review Course in Pediatric Endocrinology – 2025

Todd D. Nebesio, MD

Division of Pediatric Endocrinology/Diabetology

Indianapolis, IN

Embryology of the formation and migration of the thyroid

- The thyroid is the largest endocrine gland in humans
 - 1 to 2 grams at birth
 - Increases by about 1 gram per year until 15 y.o.
- The thyroid is the first endocrine structure formed in the fetus (occurs during 1st trimester)
- Most critical events in thyroid morphogenesis occur within the first 60 days of gestation

Embryology of the formation and migration of the thyroid

- Thyroid follicular cells (thyrocytes) arise from embryonic endoderm
- Development starts at the base of the tongue (foramen cecum)
- Thyroid is pulled downward by the heart during its descent into chest
- Various genes implicated: FOXE1 (a.k.a. TTF2, TITF2, and FKHL15), NKX2-1 (a.k.a. TTF1 and TITF1), PAX8, NKX2-5
- Other genes involved: CDCA8, GLIS3, JAG1, TBX1, and TSHR
 - TSH is the predominant regulator of thyroid growth and expansion
 - TSH not involved in thyroid gland formation and organogenesis in humans

Genes expressed in thyroid development

Genes expressed in thyroid development

Gene (location)	Inheritance	Thyroid description	Associated findings
FOXE1 (9q22.33)	Recessive	Absent or hypoplastic	Bamforth-Lazarus syndrome
NKX-2.1 (14q13.3)	Dominant	Absent, hypoplastic, or normal	Brain-Lung-Thyroid syndrome
PAX8 (2q14.1)	Dominant	Absent, ectopic, hypoplastic, or normal	Unilateral renal agenesis
NKX2-5 (5q35.1)	Dominant	Absent or ectopic	Congenital heart defects
GLIS (9p24.2)	Recessive	Absent or normal	NDM, polycystic kidneys, glaucoma, hepatic fibrosis, exocrine pancreas deficiency
JAG1 (20p12.2)	Dominant	Absent, ectopic, or normal	Alagille syndrome
TBX1 (22q11.21)	Dominant	Hypoplastic	DiGeorge syndrome
CDCA8 (1p34.3)	Dominant	Absent, ectopic, or hemiagenesis	None
TSHR (14q31.1)	Recessive or dominant	Hypoplastic (mild, moderate, or severe) or normal	None

TSH unresponsiveness syndromes \rightarrow TSH receptor (*TSHR*) defect

• Complete resistance

- Autosomal recessive
- Severe thyroid gland hypoplasia
- Positive newborn screen uncompensated

Moderate resistance

- Autosomal recessive
- Hypoplasia or normal size
- Variable newborn screen (+/-) partially compensated

Mild resistance

- Autosomal dominant
- Normal size or slight hypoplasia
- Normal newborn screen near to fully compensated

TSH receptor (TSHR) mutations are <u>not</u> associated with true athyreosis or ectopic thyroid tissue

TSH unresponsiveness syndromes \rightarrow Pseudohypoparathyroidism

• Inactivating mutations in the gene (GNAS) encoding the alpha subunit for the stimulatory G-protein ($G_s \alpha$)

Autosomal dominant

- Most common form is pseudohypoparathyroidism type 1a (PHP1a)
 - Albright hereditary osteodystrophy (AHO) phenotype
 - Resistance to multiple hormones: PTH, TSH, GHRH, LH, and FSH

Pattern and timing of HPT function in the developing fetus

- 4 weeks: TG synthesis
- 8-10 weeks: iodine trapping
- 10-12 weeks: TSH is detected (when hCG ↓)
- 12 weeks: T4 production
- 30 weeks: T3 production rises

TSH surge after birth

- Due to cold stress, TSH peaks to 60-70 at 30 minutes of life, and then returns to normal neonatal levels by 5 days
- T4 and T3 peak at 48-72 hours of life, and then gradually decline over several weeks

Approximate thyroid function values

Age	Total T4 (mcg/dL)	Free T4 (ng/dL)	Total T3 (ng/dL)	TSH (mU/L)
Cord blood	7.4 - 13.0	1.7 – 4.0	15 – 75	1 – 17
1 to 5 days	11.8 – 22.6	2.2 – 5.3	32 – 216	1 – 39
1 to 4 weeks	7.0 - 16.6	0.8 - 2.0	160 - 340	1.7 – 9.1
1 to 12 months	7.2 – 16.5	0.8 - 2.0	110 – 280	0.8 - 6.4
1 to 5 years	7.3 – 15.0	0.8 - 2.0	105 – 269	0.8 - 6.4
5 to 10 years	6.4 - 13.3	0.8 - 2.0	83 – 213	0.4 - 4.0
10 to 15 year	5.6 - 11.7	0.8 - 2.0	83 – 213	0.4 - 4.0
Adult	4.3 – 12.5	0.8 - 2.0	70 – 204	0.4 - 4.0

Thyroid hormone synthesis/processing

Thyroid hormone synthesis/processing

- **1)** TSH binds to the TSH receptor \rightarrow cAMP activation
- 2) Sodium-Iodide symporter (NIS) → iodide trapping
- 3) Iodide diffuses to the apex and enters the colloid via Chloride-Iodide transporter (Pendrin)
- 4) Oxidation of iodide to iodine by H_2O_2
- 5) Organification iodine is bound to tyrosine residues in TG to form iodothyronines (MIT and DIT)
- 6) Coupling: MIT + DIT = T3 and DIT + DIT = T4
- 7) Endocytosis TG enters follicular cell from colloid
- 8) Hydrolysis release DIT and MIT; secretion of T3 and T4
- 9) Deiodination recycling of iodide

Thyroid hormone transport

- Placenta acts as a protective barrier to the fetus

 - About a 1/3 of maternal T4 crosses the fetus at term
- Majority (>99%) of thyroid hormone is bound to proteins
 - Bound to TBG, transthyretin, or albumin
 - Amount in serum: albumin > transthyretin >> TBG
 - Binding to T4: TBG >> transthyretin >>> albumin
 - T3 is less tightly bound to proteins than T4

Thyroid hormone transport

- Thyroid hormone acts mostly intracellularly and is transported across the plasma membrane
 - МСТ8
 - MCT10
 - OATP1C1
- MCT8 is the most important plasma membrane transporter

MCT8 deficiency

- Genetic mutations in SLC16A2
- Allen-Herndon-Dudley syndrome
- X-linked
- Impaired T4 and T3 transport into cells
 - Defects in brain and other tissues
- Severe intellectual disability, developmental delays, hypotonia, dysarthria, ataxia
 - Neurological abnormalities <u>not</u> reversed with T4
- TFTs (by 1 m.o.): \downarrow T4, $\uparrow \uparrow$ T3, $\downarrow \downarrow r$ T3, normal or slightly \uparrow TSH

Metabolism of thyroid hormone

- Type 1 deoidinase (D1): inner <u>and</u> outer ring
 - Activation
 - Liver, kidney, muscle
 - Activity decreased in sick euthyroid
- Type 2 deiodinase (D2): outer ring
 - Activation
 - Brain, pituitary, adipose
- Type 3 deiodinase (D3): inner ring
 - Inactivation
 - Placenta, brain, and most other tissues

Receptors and Action

- TSH acts through a 7-transmembrane receptor that signals through Gs alpha to increase cAMP production leading to downstream effects
- Thyroid hormone receptors belong to the nuclear (steroid) hormone receptor superfamily
- Various isoforms:
 - TR α 1 CNS, heart, skeletal muscle
 - TR α 2 widely distributed in tissues
 - TRβ1 liver, kidney
 - TRβ2 pituitary, brain

Transplacental passage affecting fetal thyroid production

- Radioactive iodine
 - Given after 8-10 weeks gestation is trapped by and destroys the fetal thyroid gland
- IV contrast
- Topical iodine-containing antiseptics
- Amiodarone
- Iodine-containing nutritional supplements
 - Excess iodine resulting in fetal hypothyroidism
- Maternal Graves (blocking antibodies, MMI > PTU)

Fetal thyroid enlargement

- Fetal thyroid enlargement can be detected by prenatal ultrasound
- Goiter is non-specific for hypothyroidism or hyperthyroidism
- Goiter can be large enough at birth to cause airway compression

Fetal hypothyroidism

- Fetal brain type 2 deiodinase is preferentially increased with hypothyroidism (T4 → T3)
- Maternal hypothyroidism is associated with increased fetal loss
 - Pre-eclampsia
 - Placental abruption
 - Miscarriage
 - Preterm birth

Maternal hypothyroidism and the fetus

- Fetus does not make a significant amount of T4 until the 2nd trimester; entirely dependent on the maternal thyroid supply in the 1st trimester
- Some studies (controversial) have shown that offspring have lower IQ with maternal hypothyroidism
- #1 cause of combined maternal and fetal hypothyroidism is iodine deficiency

Congenital hypothyroidism and iodine deficiency

- Recognize that worldwide iodide deficiency is the most common cause of primary hypothyroidism and of preventable intellectual disability
- Iodine RDA: approximately 150 mcg/day (increased in pregnancy)
- Only 75% of the world's population uses iodinated salt (almost 2 billion are iodine deficient)
- Endemic goiter

Breast feeding and anti-thyroid drugs

- Very small amount of anti-thyroid drugs are secreted in breast milk (methimazole > PTU)
- Breast feeding is safe at low to moderate doses of anti-thyroid drugs
 - PTU: \leq 300 mg/day (ATA says \leq 450 mg/day)
 - Methimazole: ≤ 20 mg/day
 - Mothers should take the medication immediately following a feed and in divided doses
- Infants of affected mothers should be screened with thyroid function tests – reassuring data but limited number of patients

Incidence of congenital hypothyroidism

- Overall incidence of CH: 1 in 2000 to 1 in 4000
- Increased incidence in Down syndrome (28x)
- Dysgenesis: 1 in 3,500 — 75-85% of cases of CH
- Dyshormonogenesis: 1 in 20,000
 - about 15% of cases of CH
- Transient
 - 10-15% of cases of CH
- Central
 - -less than 5% of cases of CH

Congenital hypothyroidism is the most common disease screened for in newborns

Effect of prematurity on thyroid function in the neonate

- Cord T4 and free T4: lower in preterm infants; proportional to weight and gestational age
- Lower TSH surge (vs term infant)
 - Accompanied by lower T4 and T3 rise after birth
- Hypothyroxinemia of prematurity
 - Immaturity of the HPT axis
 - Sick euthyroid syndrome or a reflection of the stress and illness of the infant
 - Unclear benefit to treat with LT4

Thyroid dysgenesis

- 2% of cases are familial; 98% are sporadic
- Few genes have been implicated (see slides #4 and #5)
- Agenesis failure to develop
- Hemiagenesis
- Ectopic failure to migrate; most commonly sublingual (can also be lingual)
- Hypoplastic small but in the normal location

Thyroid dyshormonogenesis

- Several different steps can be affected
- The most common cause of dyshormonogenesis is due to an organification defect
- Inheritance pattern: autosomal recessive

Thyroid hormone synthesis/processing

Genetic defects in synthesis/processing

Process	Affected substance	Gene (location)	Features
Iodide trapping	Sodium iodide symporter (NIS)	SLC5A5 or NIS (19p13)	Decreased radionuclide uptake
Iodide transport into follicular lumen	Pendrin	SLC26A4 or PDS (7q31)	Sensorineural deafness (Pendrin syndrome)
Matrix for hormone synthesis	Thyroglobulin	TG (8q24)	Very low Tg levels
Iodine organification and coupling reaction	Thyroid peroxidase	TPO (2p25)	#1 cause of dyshormonogenesis
H_2O_2 generation	Thyroid oxidase (THOX)	DUOX2 (15q13.3	Transient (AD) or permanent (AR)
Intrathyroidal iodide recycling	lodotyrosine deiodinase	IYD or DEHAL1 (6q25.1)	Newborn screen is usually normal

Pendred syndrome

- SLC26A4 or PDS gene is expressed in the thyroid and cochlea

 Encodes for the protein pendrin
- Defect in the transport of iodine from the follicular cell to the colloid
- Usually presents with goiter in late childhood or adolescence most are euthyroid
- Variable thyroid disease within the same family with the same mutation
- About 10% of cases of childhood sensorineural deafness

Clinical findings of congenital hypothyroidism

- Nonspecific, subtle signs and symptoms of CH are sometimes present in the newborn period
- <u>Symptoms</u>: lethargy, decreased activity, cold to touch, constipation, feeding problems
- <u>Signs</u>: mottled skin, jaundice, macroglossia, umbilical hernia, distended abdomen, hoarse cry, dry skin, large fontanelle with wide sutures, hypotonia, delayed/slow reflexes, goiter
- Obvious features are <u>not</u> noted until 3 m.o.

3 m.o. full-term male

- "Sleeps all of the time"
- "Never smiles or looks at me"
- "Very floppy"
- 1 stool per week
- Hoarse cry
- Gags and chokes on feeds
- Low heart rate alarms
- Never had a newborn screen
- TSH > 400 → athyreosis

Patterns of osseous maturation in neonate

- Commonly ossified bones at birth:
 - Knee distal femoral epiphysis → ossification center appears at about 36 weeks gestation
 - Knee proximal tibial epiphysis
 - Foot cuboid bone
- Thyroid hormone deficiency delays this process
- Also see delayed closure of the fontanelles (especially the posterior)

Diagnostic algorithm of congenital hypothyroidism

Advantages/disadvantages of neonatal thyroid screening systems

Thyroid disorder	Primary T4 with follow-up TSH	Primary TSH
Primary congenital hypothyroidism	Very good	Very good
Central congenital hypothyroidism	Some	Not good
Mild congenital hypothyroidism	Not good	Good
Delayed rise in TSH (e.g. preterm, acutely ill term infant)	Good (but should get a follow-up test in cases with a low T4 and normal TSH)	Good (but only if get a routine 2 nd test)
MCT8 mutation	Not very good	Not good

Delineating errors in thyroid hormone synthesis

- Genetic testing can confirm specific mutations
- Iodine trapping defect (NIS)
 - Decreased or absent I-123 uptake
- Oxidation/organification defect
 - Increased I-123 uptake
 - Positive perchlorate discharge (>10%) test
- Thyroglobulin defect
 - Low serum Tg levels
- Iodotyrosine deiodinase (DEHAL)
 - Low serum/urinary iodine levels

Techniques for defining thyroid anatomy

- Radionuclide scans (scintigraphy)
 - Tc99m
 - I-123
- Ultrasonography
 - with or without Color Doppler
- Serum thyroglobulin levels
 - Lowest in agenesis
 - Intermediate in ectopic
 - Highest in infants with normally positioned glands

Thyroid scintigraphy

Tc99m

- Less expensive
- IV administration
- ½ life = 6 hours
- Only reflects thyroid trapping ability – enters the cell via NIS but cannot be organified
- Detects dysgenesis

I-123

- More expensive
- Oral administration
- ½ life = 13 hours
- Also enters via NIS but then is organified
- Detects dysgenesis and also organification defects

Absent radionuclide uptake may occur in conditions with a normally positioned thyroid gland, such as TSHβ gene mutations, TSH receptor inactivating mutations, iodine trapping defects (e.g. NIS), and TSH receptor blocking antibodies.

Sublingual thyroid gland

Sublingual thyroid gland

Absent thyroid gland

Maternal TSH receptor antibody (TRAb)

• TRAb (a.k.a. TBII)

- Graves disease both blocking and stimulating
- Hashimoto blocking antibodies in about 10% of women

IgG antibody that readily crosses the placenta

- -Transient hypothyroidism
- -Incidence: 1 in 180,000
- -Half-life: 3 to 4 weeks
- Usually disappear from infant by 3 to 6 months but dependent on the antibody amount and potency
 - Trial off when TRAb is negative but safest to treat until 2-3 y.o.

Maternal TSH receptor antibody (TRAb)

- Maternal TRAb can inhibit TSH-induced iodine uptake and result in apparent absence of the thyroid gland (on Tc99m and I-123 scans)
- Similar findings are seen in cases of permanent CH such as agenesis, iodine trapping defects (i.e. NIS), TSH β gene mutations, and inactivating mutations of the TSH receptor
- Thyroid ultrasound will reveal a normal thyroid gland in the normal location

Congenital central hypothyroidism

- Often associated with other pituitary hormone deficiencies
 - GH deficiency: hypoglycemia in newborn period
 - ACTH deficiency: hypoglycemia
 - LH/FSH deficiency: micropenis and cryptorchidism in males
 - ADH deficiency: least common
- Rare to have isolated TSH deficiency
 - TSH β subunit gene mutation
 - TRH gene mutation/deficiency
 - TRH receptor inactivating mutation

Congenital central hypothyroidism

- Be aware of intracranial anatomical defects which may accompany TRH or TSH deficiencies
- Midline brain abnormalities
 - -Absent septum pellucidum
 - -Absent corpus callosum
 - -Holoprosencephaly and hydranencephaly
 - -Septo-optic dysplasia
- Cleft lip/palate
- Single central maxillary incisor → hypopituitarism (and GHD)

Treatment of congenital hypothyroidism

- Initial dosage of LT4 is 10-15 mcg/kg/day
- Goal is normalize the T4 level within 2 weeks and TSH within a month (i.e. < 10)
- Serum T4 or free T4 should ideally be in the upper half of the reference range during the first 3 years of treatment
 - TSH may inappropriately be elevated because of relative pituitary resistance → need to use T4 or free T4 levels to titrate dose in this situation

Treatment of congenital hypothyroidism

- Infants with low serum T4 (< 10 mcg/dL) and a TSH > 15 mU/L during the first year of life have lower IQ values than patients with T4 concentrations that are held constant at higher concentrations
- Avoid concomitant administration of LT4 with
 - Soy
 - Fiber
 - Iron
 - Calcium carbonate
 - Simethicone

Treatment of congenital hypothyroidism

- Know the potential side effects and consequences of overtreatment with LT4
 - Premature suture closure; craniosynostosis
 - Advanced bone age
 - Lower cognitive outcome

Mild congenital hypothyroidism frequently normalizes and treatment may not be necessary

- More commonly seen in screening programs with lower TSH cutoffs
- Clues to suggest that it may resolve:
 - TSH trending toward normal (screen → serum)
 - Free T4 is normal to upper part of normal range
- Reasonable to follow trend of TFTs at weekly intervals need to start LT4 at 4 weeks of life if TSH > 10

ABP outline – handout

 Additional ABP specifications and information are contained in the handout