USEFUL FORMULAS AND HELPFUL HINTS

In the following formulas, ${ }_{s}=$ serum $_{,}=$urine
Body Mass Index (BMI) =
weight (kg) / height ${ }^{2}\left(\mathrm{~m}^{2}\right)$ or
weight (lbs) $\times 703 /$ height $^{2}\left(\right.$ inches ${ }^{2}$)
Body Surface Area (BSA) =
square root of [(height in $\mathrm{cm} \times$ weight in kg) / 3600]
Approximate BSA: infant $0.3,30 \mathrm{~kg}$ child 1, adult 1.73

Corrected calcium =
total calcium $+[0.8 \times(4-$ albumin $)]$
Ionized calcium:
In alkalosis, more calcium bound to protein \& ionized Ca decreases (total Ca unchanged) In acidosis, less calcium bound to protein \& ionized Ca increases (total Ca unchanged)

Ca clearance ratio $=$
[$\mathrm{Ca}_{\mathrm{u}} \times \mathrm{Cr}_{\mathrm{s}}$] / $\left[\mathrm{Cr}_{\mathrm{u}} \times \mathrm{Ca}_{5}\right.$] (first morning sample or 24-hour collection preferred) < 0.01 indicative of Familial hypocalciuric hypercalcemia (FHH)
$\mathrm{Ca}_{u} / \mathrm{Cr}_{\mathrm{u}}>0.2$ (generally higher and more variable in infants*) predisposition to nephrocalcinosis $95^{\text {th }}$ percentile for different age groups (Sargent JD et al. J Pediatr 1993;123(3):393-7):
<7 months: 0.86
7-18 months: 0.6
19 months -6 years: 0.42
Adults: 0.22

Corrected sodium $=$
sodium $+\{1.6 \times[($ glucose -100$) / 100]\}$
Fractional excretion of sodium $($ FENa $)=$
$100 \times\left[\left(\mathrm{Na}_{\mathrm{u}} \times \mathrm{Cr}_{s}\right) \div\left(\mathrm{Na}_{\mathrm{s}} \times \mathrm{Cr}_{\mathrm{u}}\right)\right]$
Free water deficit (liters) $=$
$(0.6 \times \mathrm{kg}) \times\left[\left(\mathrm{Na}_{s} / \mathrm{Na}_{\text {target }}\right)-1\right]$ Use $1 / 2$ to $1 / 3$ this volume in SIADH

Glucocorticoid anti-inflammatory equivalence:
1 mg Prednisone $=4 \mathrm{mg}$ Hydrocortisone
1 mg Dexamethasone $=27-50 \mathrm{mg}$ Hydrocortisone

Glucose infusion rate (GIR) in $\mathrm{mg} / \mathrm{kg} / \mathrm{min}=$ [(\% dextrose solution) x (IV rate in ml$)] \div$ [weight in kg) x 6]

LDL cholesterol =
total cholesterol - HDL - (triglycerides $\div 5$)

Mid parental height (MPH) =
o Boy

- Inches: (Father's Height + Mother's Height + 5) / 2
- Cm: (Father's Height + Mother's Height + 13) / 2
o Girl
- Inches: (Father's Height - 5 + Mother's Height) / 2
- Cm: (Father's Height - 13 + Mother's Height) / 2

Osmolality $=(2 \times \mathrm{Na})+($ glucose $\div 18)+(B U N \div 2.8)$
SI Conversion Calculator: http://www.amamanualofstyle.com/page/si-conversion-calculator

Transtubular potassium gradient $=\mathrm{K}_{\mathrm{u}} / \mathrm{K}_{\mathrm{p}} \div$ osm $_{\mathrm{u}} / \mathrm{osm}_{\mathrm{p}}$
Formula only valid if osm ${ }_{u}>300$ and $K_{u}>25$)
<7 in the setting of hyperkalemia indicates mineralocorticoid deficiency
Tubular reabsorption of phosphate (TRP) $=1-\left[\left(\right.\right.$ phos $_{u} \times$ creat $\left._{s}\right) \div\left(\right.$ Phos $_{s} \times$ creat $\left.\left._{u}\right)\right]$ <0.85 suggests excess phosphorus wasting/hyperparathyroidism

